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Typical Backtest Workflow 

 

 



Optimizing Trading Signals 

• Optimize trading strategy ≈ Optimize sum(PLs) 
by tweaking trading signals. 

• Number(trading signals) << Number(prices) 
typically. 
– Easy to cherry-pick trading signals for 

optimization. 

– Overfitting/data Snooping Bias. 

– No predictive power on unseen/out-of-sample 
data! 



Remedies for Overfitting 

• Increase length of historical backtest period. 

– Subject to data availability 

– Regime changes ⇒ old prices may be irrelevant. 

• Create mathematical model of historical prices, 
then analytically find optimal trading signals 

– Effectively infinite backtest period. 

– Historical price models tend to be oversimplified. 

– Only analytically solvable for Trading Signals and 
performance objective linearly related to prices. 

 

 



Remedies for Overfitting 

• Simulate historical prices with similar statistics 
as actual historical prices. 

– As large number of price series as practical. 

– Can capture as many quirks of actual historical 
prices as necessary. 

• E.g. serial correlation, volatility clustering, tail events, … 

– Can be used to optimize nonlinear trading signals 
and performance objectives. 

 

 



Analytical Optimization 

• Example: a mean-reverting log price series 𝑥. 

• Ornstein-Uhlenbeck equation 
𝑑𝑥 𝑡 = 𝜅 𝜃 − 𝑥 𝑡 𝑑𝑡 +  𝜎𝑑𝑊(𝑡) 

𝜅: rate of mean reversion 

𝜃: mean log price level 

𝜎: conditional volatility of 𝑥 

W: random walk  

• What are optimal entry/exit levels? 

– Optimal ≡ maximum expected (discounted) profit for 
single round-trip trade. 

– Similar to optimal Bollinger bands. 
 

 



Solving HJB 

• Cartea, 2015 demonstrated solution using Hamilton-Jacobi-Bellman 
equation (a PDE), familiar from stochastic control theory. 

• Numerical solution to equation shows 
– Entry and exit levels are asymmetric w.r.t. mean, due to discount 

factor. 
– Entry level closer to mean level than exit level. 
– Distance of entry / exit levels to mean increases with decreasing 𝜅. 
– Distance of entry / exit levels to mean increases with increasing 𝜎. 

– (Last 2 points expected because unconditional volatility is  
𝜎2

2𝜅
⇔ 

width of Bollinger bands.) 
– Long exit = short entry, vice versa. 
– Position is path-dependent. 
– Always in either long or short position. 



Optimal Entry and Exit 
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Analytical Optimization 

• What if underlying price prices are not described 
by simple SDE like OU process? 
– Jumps, volatility clustering, long range correlations, 

etc. 

• What if objective function is not discounted profit 
but a nonlinear function of PL? 
– Sharpe ratio, Calmar ratio, etc. 

• What if objective function is total PL, not PL per 
trade? 

• Even setting up HJB equation is too difficult. 



Simulation for optimization 

• We can simulate as many copies of price series as 
we like. 
– All follow the same time series model, e.g. AR(p). 

• Find trading parameters that maximizes the 
average Sharpe ratio over all simulated price 
series. 
– Similar to solving HJB equation. 

• Alternatively, find trading parameters that most 
often maximizes Sharpe ratio of a simulated price 
series. 
– Similar to maximum likelihood estimation. 





Example: AUDCAD 

• ADF test indicates hourly AUDCAD prices are 
stationary with p-Value better than 1%. 

• Assume AR(1) model on daily log prices 𝑥. 

 
𝑥 𝑡 = 𝑎1𝑥 𝑡 − 1 + 𝑎0 + 𝜎0𝜖 𝑡  

 
𝜖~𝒩(0, 1) 

 

– For illustrative purpose only. 

– Train (𝑎0, 𝑎1, 𝜎0) on first half of data using MLE. 

 

 



Optimal trading of AUDCAD 

• Simulate 10,000 log price series based on 
fitted AR(1). 

– Each series is about 3.7 years (~10 x halflife). 

• On each series, backtest a simple strategy: 

 Buy if expected log return > 𝑘𝜎0 

 Sell if expected log return < -𝑘𝜎0 

 Flatten otherwise. 

• Apply 1.8 bps per side transaction cost. 



Simulation Results 

• Maximizing the average Sharpe ratio gives 
optimal 𝑘=0.0088±0.0002. 

𝐴𝑟𝑔𝑚𝑎𝑥𝑘{𝐸𝑝𝑎𝑡ℎ[𝑆ℎ𝑎𝑟𝑝𝑒(𝑝𝑎𝑡ℎ)|𝑘]} 

• In contrast, 𝑘=0.01±0.006 maximizes the 
likelihood that a path has highest Sharpe ratio 

𝐴𝑟𝑔𝑚𝑎𝑥𝑘{𝑃𝑝𝑎𝑡ℎ[𝐴𝑟𝑔𝑚𝑎𝑥𝑘 [𝑆ℎ𝑎𝑟𝑝𝑒(𝑘 , path)]]} 

• In general, the first method is more accurate 
since all paths are used to determine 𝐸𝑝𝑎𝑡ℎ. 





OOS Backtest Optimal Parameter 

  



OOS Backtest Suboptimal Parameter 

  



Suboptimal > optimal? 

• Backtest of “optimal” parameter underperforms 
that of “suboptimal” parameter out-of-sample. 

• AR(1) model may need refitting periodically. 

• Nobody promises that for a particular realized 
path, our optimal 𝒌 will maximize Sharpe! 

– It is worth trading a range of 𝑘 in the vicinity of the 
optimal for diversification. 

• See similar work by Carr and Lopez de Prado, 
2014. 



Further work 

• Can easily optimize other nonlinear functions of 
prices instead 
– Calmar ratio. 
– CVaR . 

• Can easily extend this to more complicated time 
series models 
– AR+GARCH 
– Nonlinear generative models: e.g. LSTM (recurrent 

neural network) 

• Can easily extend this to more complicated 
trading strategies, with multiple parameters. 



Conclusion 

• Optimizing trading strategy parameters on 
historical data invites overfitting. 

• More robust to fit time series (not trading) 
models on historical data instead. 

• Fitted time series model can be used to 
simulate arbitrary number of time series. 

• Can find optimal trading parameters on 
simulated time series to arbitrary precision. 
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